본문 바로가기
Dim영역

인공지능이 만든 문장·번역·이미지 오류 자동으로 고친다

숏뉴스
숏 뉴스 AI 요약 기술은 핵심만 전달합니다. 전체 내용의 이해를 위해 기사 본문을 확인해주세요.

불러오는 중...

닫기
언론사 홈 구독
언론사 홈 구독
뉴스듣기 스크랩 글자크기

글자크기 설정

닫기
인쇄

최재색 KAIST 교수팀, 딥러닝 생성모델 오류 수정 기술 개발

인공지능이 만든 문장·번역·이미지 오류 자동으로 고친다
AD
원본보기 아이콘


[아시아경제 김봉수 기자] 한국과학기술원(KAIST)은 인공지능(AI) 대학원 최재식 교수 연구팀이 심층 학습(딥러닝) 생성모델의 오류 수정 기술을 개발했다고 25일 밝혔다.


최근 딥러닝 생성모델(Deep Generative Models)은 이미지, 음성 뿐만 아니라 문장 등 새로운 콘텐츠를 생성하는 데 널리 활용되고 있다. 이런 생성 모델의 발전에도 불구하고 최근 개발된 생성 모델도 여전히 결함이 있는 결과를 만드는 경우가 많아 국방, 의료, 제조 등 중요한 작업 및 학습에 생성 모델을 활용하기는 어려운 점이 있었다.

연구팀은 딥러닝 내부를 해석하는 설명 가능 인공지능 기법을 활용해 생성모델 내부에서 이미지 생성 과정에서 문제를 일으키는 유닛(뉴런)을 찾아 제거하는 알고리즘을 고안해 생성 모델의 오류를 수리했다. 이러한 생성 오류 수리 기술은 신경망 모델의 재학습을 요구하지 않으며 모델 구조에 대한 의존성이 적다. 다양한 적대적 생성 신경망에 폭넓게 응용 및 적용될 수 있고 딥러닝 생성 모델의 신뢰도도 향상됐다.


연구팀은 "딥러닝 생성모델이 생성한 결과물에 있는 시각적 오류를 찾고, 이에 상응하는 활성화를 보이는 생성모델 내부의 유닛을 순차적으로 제거함으로써 생성 오류를 수리할 수 있음을 보였다"라며 "충분히 학습된 모델 내부에 미학습 혹은 잘못 학습된 내부요소가 있음을 보여주는 결과"라고 말했다.


이번 연구 결과는 '국제 컴퓨터 비전 및 패턴인식 학술대회(CVPR)'에서 지난 23일 발표됐다.





김봉수 기자 bskim@asiae.co.kr
AD

<ⓒ투자가를 위한 경제콘텐츠 플랫폼, 아시아경제(www.asiae.co.kr) 무단전재 배포금지>

함께 본 뉴스

새로보기
간격처리를 위한 class

많이 본 뉴스 !가장 많이 읽힌 뉴스를 제공합니다. 집계 기준에 따라 최대 3일 전 기사까지 제공될 수 있습니다.

언론사 홈 구독
언론사 홈 구독
top버튼

한 눈에 보는 오늘의 이슈